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There have been many attempts to understand the coupling phenomena between a solid
structure and the surrounding #uid. However, the studies were restricted to interaction only
between a structure and a "nite cavity or a structure and acoustic "eld of in"nite size. The
system that we have studied has a structure that faces both a cavity of "nite size and an
external "eld of semi-in"nite size. We also allow a hole, which can directly interact with the
cavity as well as the external "eld. This con"guration, therefore, provides two di!erent
interactions, or communication means. One is the "nite structure and the other is the hole of
"nite size. This paper studies as to how these two components interact with the other two
systems: the "nite cavity covered by the structure and the hole, and the semi-in"nite #uid.
For simplicity, a two-dimensional and partially opened cavity coupled with a membrane
and an exterior "eld was selected. The solution has to be found by solving a boundary value
problem, but this case has to do with the boundaries that have two di!erent conditions: one
is the membrane and the other is the hole. The solution has been found in terms of the modal
functions that satisfy the boundary conditions of "nite cavity, membrane and hole.
Non-dimensional coupling coe$cients are obtained from the solution. The results exhibit
that the coupling e!ect gives additional peaks and troughs in the averaged pressure of the
cavity. These peaks and troughs are symmetrically arranged with respect to Helmholtz
frequency of the cavity. The strong coupling occurs at the trough frequencies where the
membrane interacts actively with the cavity and the exterior "eld.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The sound pressure "eld in a cavity is a!ected not only by acoustic sources in the cavity but
also by the acoustic characteristics of the cavity walls. One of the simplest examples of these
systems is the cavity whose cross-sectional area is rectangular or circular and whose walls
are acoustically rigid. This con"guration makes it possible to analyze the system by using
well-known functions such as harmonic functions (for example, see reference [1]). When
absorbent material is attached to part or all of the wall surface, we can analyze the system
mathematically by assuming the wall as locally reacting and having a small absorption
coe$cient [1]. However, if the walls include a #exible structure, we must consider them as
having extensively reacting boundary conditions. This structural}acoustic coupling makes
it di$cult for us to obtain the solutions because their corresponding governing equations
have to be solved simultaneously.

Studies on structural}acoustic coupling have been done very extensively. For example,
Dowell and Voss [2] tried to analyze a cavity-backed plate and Lyon [3] studied the e!ect
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. The coupling system that has four subsystems (an interior, an exterior, hole and a #exible structure).
The hole allows direct interaction between the interior and the exterior.
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of a #exible wall on a cavity. Pretlove [4, 5] derived an expression for the cavity-backed
plate vibration using in-vacuo modes. De Rosa et al. [6] reviewed the basic methodologies
for the study of the vibroacoustic problem of enclosed cavities. The cavity has one elastic
wall in the low modal density frequency region. The acoustic coupling between "nite cavity
and exterior "eld has also been studied extensively in musical acoustics. For example,
a guitar and violin have been studied [7}11]. All these studies considered the interaction
between a structure and a cavity of "nite size and neglected and e!ect of external "elds of
in"nite size. Seybert et al. [12] attempted to obtain the solution of coupled interior/exterior
acoustic problems. They used the boundary element method that can handle continuity
conditions at the interface surface between two domains. However, it is not able to consider
a structural vibration at the interface. Guy [13] investigated acoustic energy from an
external "eld to a cavity through a panel. However, neglected the mutual interaction
between the cavity and the external "eld. Morse [14] studied the interaction between
a membrane and external "elds. The important point of his study is that it considered
incident and transmitted waves propagating in the in"nite "eld. These studies certainly
provided many useful results so that we can understand the coupled acoustic problem.
However, those are very limited, therefore cannot cope with general coupled acoustic
problem, which can be illustrated as in Figure 1.

In this paper, we attempt to study the coupling system that has a cavity which is covered
by a hole and a #exible structure. The di$culty in the analysis arises not only because there
is a structural}acoustic coupling but also because there is an interaction between the cavity
and the exterior. Although there has been an experimental approach using the acoustic
holographic method [15], no study has been done theoretically, except the ones with
simpli"ed models [16, 17]. For this reason, we have studied a simple coupling system as
shown in Figure 2. For simplicity, a membrane was chosen as a structure. When a plate is
used instead of the membrane, the second order governing equation in replaced with the
fourth order one. This would lead us to have di!erent modal functions, which include
exponential expression additionally. Because their values are decaying as the calculation
points go far from the boundaries, we can say that the di!erence occurs only around the
boundaries, compared with the mode shapes for a membrane. This paper has attempted to
investigate the structural}acoustic coupling mechanism by using as simple a case as
possible, so that we can highlight our study on the coupling. The next study will have to do
with the structure that has more complicated mode shapes. However, it is noteworthy that
the basic formulation and solution method will be the same if we try to express the



Figure 2. The two-dimensional coupling system used in the study: a partially opened cavity coupled with
a membrane and a semi-in"nite exterior "eld.
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structural vibration and acoustic pressure "eld by using orthonormal functions, or mode
shapes. One boundary condition of the membrane is free, so that we can have a hole,
starting from the end of the membrane to the wall of the cavity (Figure 2). The free
boundary condition may be envisaged by connecting the membrane at the free end to the
other side of the hole by using massless strings.

The objective of our study is to understand the coupling e!ect in a general
structural}acoustic coupling system. To meet this objective, we derived the governing
equations that can express the structure, hole, cavity and exterior "eld. The di$cult part in
the analysis is that we have to handle two di!erent boundary conditions at the interface
(Figure 2). This mathematically means that we have more equations than unknowns. This
rather challenging problem has been solved by utilizing the modal functions of the
membrane, hole, and the cavity so that the number of equations and number of unknowns
in the modal domain are the same. The details are given in section 3.

The contribution and highlight of this paper are that it provides the coupling measures.
They show as to how the "nite cavity communicates with the exterior "eld through the
vibrating structure and the hole. These communications depend on frequency, therefore
wavenumber and wavelength.

2. GOVERNING EQUATIONS FOR THE COUPLING SYSTEM UNDER STUDY

2.1. DESCRIPTIONS OF THE COUPLING SYSTEM

The coupling system used in this study is composed of four parts: a cavity, a membrane,
a hole, and a semi-in"nite space (Figure 2). We assume that the system does not depend on
y direction. In other words, the analysis is restricted to a two-dimensional case for its
simplicity. The cavity is rectangular and its size is ¸

�
by ¸

�
. Its walls are assumed to be

acoustically rigid except the top wall (z"0, 0(x(¸
�
). The top of the cavity is partially

covered by a membrane (z"0, 0(x(�¸
�
, 0(�(1) and the other part

(z"0, �¸
�
(x(¸

�
) remains open so that direct interaction occurs between the cavity and

the outer semi-in"nite acoustic "eld (z'0). One end (x"0) of the membrane is "xed to the
cavity and the other end (x"�¸

�
) is free. The thickness of the membrane is regarded as

negligible compared with the shortest wavelength of interest. The outer "eld is semi-in"nite
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and its lower boundary (z"0, x(0 and x'¸
�
) is assumed to be a rigid ba%e. The system

is excited by a monopole source which is located at the bottom of the cavity
(z"!¸

�
, x"x

�
). The monopole strength (volume velocity of the source) is Q.

2.2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Assuming harmonic time dependence e���, we can obtain the governing equations for the
acoustic "elds and the membrane as

�
��

�x�
#

��

�z�
#k�� p�(x, z)"0 (inside the cavity), (1)

�
��

�x�
#

��

�z�
#k�� p�(x, z)"0 (outside the cavity), (2)

�
d�

dx�
#���w (x)"!

1

¹

�p�(x, 0)!p�(x, 0)� (on the membrane, 0(x(�¸
�
), (3)

where p�, p�, and w represent pressure inside and outside the cavity and membrane
displacement, k and � represent the wavenumber in the acoustic "elds and the membrane,
and ¹ denotes the tension acting in the membrane. The equations for the boundary
conditions at the left, right and bottom walls of the cavity are

�p�
�x �

���

"

�p�
�x �

����

"0. (4a, b)

�p�
�z �

�����

"!jk�cQ�(x!x
�
) . (5)

Since the rigid ba%e is located at z"0, the following boundary condition must be satis"ed:

�p�
�z �

���

"0 (x(0, x'¸
�
). (6)

The boundary conditions for the membrane are

w �
���

"0,
dw

dx �
�����

"0. (7a, b)

On the membrane surface (0(x(�¸
�
) the velocity continuity must be satis"ed. At the

hole (�¸
�
(x(¸

�
), pressure and particle velocities must be continuous. These lead to the

following equations:

�p�
�z �

���

"�	�w,
�p�
�z �

���

"�	�w (0(x(�¸
�
), (8a, b)

p��
���

"p��
���

,
�p�
�z �

���

"

�p�
�z �

���

(�¸
�
(x(¸

�
) . (9a, b)

We now have three governing equations (equations (1}3)), and rather complicated
boundary conditions (equations (4}9)). The next section attempts to solve this boundary
value problem.
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3. MATRIX EQUATION FOR MODEL COEFFICIENTS

The cavity pressure can be expressed by the superposition of e�����e�����, e�����e�����,
e�����e����� , and e�����e����� , where k�

�
#k�

�
"k�. These represent positive- and

negative-going parts of x and z directional waves. By applying the left and right boundary
conditions of the cavity (equations (4a) and (4b)), the pressure inside the cavity can be
written as

p�(x, z)"
�
�
���

cos k
��
x (P�

�
e������#P�

�
e�����), (10)

k�
��

#k�
��

"k�, k
��

"

n

¸
�

, (11a, b)
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i
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�k�!k�
��
, k�'k�

��
,

!j�k�
��

!k�, k�(k�
��
,

(11c)

where k
��

and k
��

are x and z directional wavenumbers of the nth mode respectively.P�
�

and
P�
�

represent positive- and negative-going modal coe$cients of the nth mode.
Pressure outside the cavity can be derived from the Kirchho!}Helmholtz integral

equation (for example, see reference [18]), i.e.,

p�(x, z)"!�
�

��
�G(x, z ��, 0)

�p�(�, 0)
��

!p�(�, 0)
�G(x, z ��, 0)

�� �d�, (12)

where G(x, z ��, �) is any Green's function which satis"es

�
��

�x�
#

��

�z�
#k��G(x, z ��, �)"!� (x!�)�(z!�). (13)

We may choose Green's function that satis"es the Neumann boundary condition at z"0
(equation (6)). Then the second term of equation (12) vanishes. Therefore, equation (12) can
rewritten as

p�(x, z)"!�
��

�

G(x, z ��, 0)
�p�(�, 0)

��
d�, (14)

G(x,z ��, 0)"!

j

2
H ���

�
(kr) , r"�(x!�)�#z� . (15a, b)

The integration region has to be 0(x(¸
�
in equation (14). This is simple because the

z directional derivatives of pressure is zero in the region x(0 and x'¸
�
. Here, H���

�
( ) ) is

the second kind Hankel function of order zero that obviously satis"es the Neumann
boundary condition at z"0.

On the other hand, the membrane displacement can be tried to be expressed as

w (x)"
�
�

	��

=
	
sin�

	
x, �

	
"

(2m#1)

2�¸

�

. (16, 17)
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This satis"es the corresponding boundary conditions (equations 7(a) and 7(b)). We now
have expressions for the pressure, inside of the cavity (p�, equation (10)), outside of the
cavity (p�, equation (14)), and for the membrane displacement (w, equation (16)). All
unknowns of these expressions have to be determined according to the corresponding
boundary conditions. Next, detailed procedures are described.

On inserting equation (10) into equation (5) we obtain

j
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�
���

k
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cos k

��
x (!P�

�
e������#P�

�
e�������)"!jk�cQ�(x!x

�
) (0(x(¸

�
) (18)

and substituting equation (10) into equation (3) and by using equations (14), (16), (8) and (9)
we have
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Again substituting equation (10) into equation (8a) and by using equation (9b) we have
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k
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x (!P�
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By substituting equation (10) into equation (9a) and by using equation (9b) we have
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Now, we have four equations (equations (18}21)), while having three unknown coe$cients,
P�
�
, P�

�
, and=

	
. This rather di$cult problem is due to the dual boundary condition on the

surface z"0. That is, one is the membrane and the other is the hole. It is noteworthy that
the number of unknowns has also to do with the indexes n and m. This is essentially related
to the way in which the acoustic cavity interacts with the membrane. The solutions, in other
words, determining the three groups of unknown coe$cients, have to be found by utilizing
the orthogonal functions that are used in equations (18)}(21). Next, the details of the
method which we pursue to obtain the solution are given.

Firstly, we multiply equation (18) by cos(k
���
x) and then integrate it from 0 to ¸

�
. This

leads to
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¸
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�
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1 n"0,

2 n"1, 2, 3,2 .
(24)
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Similarly, multiplying equation (19) by sin(�
	�
x) and integrating it from 0 to �¸

�
, readily

gives us
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1

2
H���

�
(k¸

�
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Equation (25) contains two non-dimensional coupling coe$cients, �N
	�

and aN
	�

. The "rst
coe$cient �N

	�
represents the component of the mth membrane mode for the nth cavity

mode or vice versa. The second coe$cient aN
	�

expresses the modal contributions, membrane
and cavity mode, of the Green function (equation (15)). We could also say that,
aN
	�

represents the degree of participation ofmth modal component to nth cavity mode when
it propagates.

As we have done before, multiplying equation (20) by sin(�
	�
x) and integrating it from

0 at �¸
�
we obtain
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Finally, multiplying equation (21) by sin ��
	
(¸

�
!x) and integrating if from �¸

�
to ¸

�
, where

we have the hole, we obtain
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1
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�
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Equation (29) has two non-dimensional coupling coe$cients, �N
	�

and bM
	�

. The "rst
coe$cient �N

	�
represents the mth modal component (sin(�

	
x)) of the nth cavity mode.

Compared to �N
	�

, this expresses the modal contribution of the hole and the cavity. These
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two coe$cients �N
	�

and �N
	�

are real and functions of only m, n and �. The second coe$cient
bM
	�

has characteristics similar to aN
	�

, but expresses the role of the hole and the cavity. It is
noteworthy that the integral regions are di!erent (equations (26), (27), (30) and (31)).

If we eliminate P�
�

and=
	
in equations (22), (25), (28) and (29), then we have equations

only in terms of P�
�
, i.e.,
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Here, the variable s
	
is
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"

¹���
	
!���

�	�
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� �

�
!1� (34)

and it has the dimension of length.
We can rewritten equations (32) and (33) in a more compact form. This has to do with

a matrix form for the coe$cient P�
�
. This can be readily obtained as
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where the elements of each matrix are
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cos k
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The characteristics of the coupling system can be readily understood by using the
solutions of equations (35a, b). As we mentioned before, the number of equations (equations
(35a, b)) is larger than the number of unknowns (P�

�
). In other words, P�

�
has to satisfy two

equations. It is noteworthy, however, that equations (35a, b) are in fact in matrix form.
Therefore, the actual number of unknowns has to be determined by how many P�

�
terms we

want to obtain. The number of P�
�

terms has to do with the modal density for a selected
excitation frequency: the frequency of the acoustic source. In practice, we may, however,
attempt to start with an arbitrary number, then increase the number until we have the result
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that is not sensitive to the increase. We can solve this problem by using the same number of
modes and equations. If we want to obtain N#1 coe$cients P�

�
(n"0,2,N), then we

may use M equations (35a) and N#1!M equations (35b). The number M and
N#1!M are the ones which makes all three modal functions (cavity, membrane, and
hole) have nearly same wavenumbers. The simulations performed in section 5 were obtained
by this method.

4. PROPERTIES OF PARAMETERS AND LIMIT CHECKS

4.1. COUPLING COEFFICIENTS

There are four coupling coe$cients: ��
	�

, �N
	�

, aN
	�

, and b�
	�

. The coe$cient ��
	�

is
a non-dimensional real-valued function of m, n, and �. It represents the mth modal
component of �

	
(x)"(2m#1)
x/2� (modal function of the membrane) with regard to nth

mode, �
�
(x)"cos n
x (modal function for the cavity), or vice versa. Whether or not it

satis"es the relation 2m#1"2�n, it has a di!erent expression (see equation (26)). As
2m#1 goes to 2�n, the expression for 2m#1O2�n converges to the expression for
2m#1"2�n. Thus, ��

	�
is a continuous function if m and n are real independent variables.

By comparing the "rst expression with the second one, we can learn that the "rst one tends
to have a maximum value when 2m#1"2�n. This means that ��

	�
has the maximum value

when n"(2m#1)/2�. In other words, the coupling between �
	
(x) and �

�
(x) will be strong

when the wavenumbers are the same. As m or n goes to in"nity, �N
	�

goes to 0 with the speed
of 1/m or 1/n. This means that a higher mode makes the coupling e!ect between
a membrane and cavity smaller. When �"0, so is ��

	�
. This is a very straightforward result.

It simply means that if there is no membrane, then there is no chance for a cavity to interact
with a membrane. A similar behavior can be observed for the coe$cient ��

	�
. It is

a non-dimensional real-valued function ofm, n, and � (or �). It has the maximum value when
n"(2m#1)/2� and it goes to zero as m and n becomes smaller. If �"0 (or �"1), then
��
	�

is zero. This means that the interaction between the cavity and hole (or outer domain) is
not possible.
aN
	�

is a function of m, n, � and k¸
�
. It is noteworthy that aN

	�
is a complex value and

dependent on the cavity length divided by the wavelength. This is because aN
	�

includes
a function H���

�
(k¸

�
�x!��). We can obtain the distribution of sound pressure along the

x-axis from 0 to 1 when monopole sources are distributed along the x-axis from 0 to � and
their strength is equal to �

	
(x). aN

	�
is the nth modal component (�

�
(x)) of the pressure

distribution. It also represents the coupling between the membrane and cavity modes such
as ��

	�
does. However, it represents the e!ect of propagation. Therefore, when �"0, so is

aN
	�

. This means that there is no interaction between a membrane and a cavity.
The last coe$cient bM

	�
has properties similar to aN

�	
. It is a non-dimensional

complex-valued function of m, n, � and k¸
�
. It is the nth modal component (�

�
(x)) of the

pressure "eld along the x-axis (0(x(1) that is made by the monopole of strength �
	
(x),

which is distributed along the x-axis (�(x(1). It goes to zero as � is taken as 0� (or �
as 1�). This means that there is no interaction between a cavity and the "eld outside the
cavity.

4.2. LENGTH PARAMETER s
	

The parameter s
	
(equation (34)) has a length dimension and interesting limit values. As

� goes to in"nity or a frequency increases, s
	

approaches !�
	
/�. This indicates that
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s
	
depends only on the ratio of the density of the membrane to the density of the acoustic

media in the cavity, for example, air. This means that the mass e!ect becomes dominant at
a high frequency. On the other hand, as � goes to zero, s

	
approaches ¹��

	
/�	�. This

depends on the ratio of membrane tension to the acceleration force subjected to the air. The
other interesting results are summarized in Table 1.

4.3. LIMITING VALUES OF A
	�

AND B
	�

FOR VARIOUS CASES RELATED TO THE VARIABLE k
��

As k
��

¸
�
goes to zero, A

	�
and B

	�
have a tendency to depend only on ��

	�
and ��

	�
. The

disappearance of aN
	�

and bM
	�

means that the vibration of the membrane is no longer



Figure 3. The two uncoupled systems that were used for the veri"cation: (a) a partially opened cavity;
(b) a closed cavity.

Figure 4. The spatially averaged sound pressure in the cavity: } } }, closed cavity; } ) } ) } ) , opened cavity;**,
coupling system.
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e!ective to the system. The same phenomena occurs when k
��

¸
�
has a very small value. This

is because the size of the cavity relative to the z directional wavenumber is almost zero.
Table 2 shows the limiting values of A

	�
and B

	�
for several cases.

5. NUMERICAL SIMULATIONS

In order to visualize the coupling system's behavior by using the equations derived, we
performed several numerical simulations. For the veri"cation of the equations, two
uncoupled systems were also studied (Figure 3). The cavity size was 0)16 m�0)13 m. The
system was excited by a monopole source located at the bottom (x"0)07 m).

Figure 4 shows the pressure squared that is averaged over the cavity. We can see several
sharp peaks for the closed cavity's case (dashed line). These peaks correspond to the cavity's
natural frequencies. Table 3 compares several natural frequencies of the cavity system
obtained by an analytic method with those obtained by the simulation. The discrepancy is
due to the frequency resolution. Ten Hertz (� (k¸

�
)+0)03) was used in the simulation. For



TABLE 3

Comparison of several natural frequencies of the system obtained by an analytic method and
those obtained by the simulation (�f"10 Hz for numerical simulation)

Calculated natural frequency
(Hz)

Natural frequency obtained by
numerical simulation (Hz)

Mode (l, n)

1072 1070 (0, 0)
1319 1320 (1, 0)
1700 1700 (1, 1)
2144 2140 (2, 0)
2517 2520 (2, 1)
2638 2640 (0, 2)
2848 2850 (1, 2)

Figure 5. Contour and vector plots of acoustic "elds at the "rst resonance frequency (frequency for the
Helmholtz resonator mode), pressure and intensity are normalized by ��(p�)�� and �(p�)��/2�c� respectively: (a)
pressure and active intensity for the partially opened cavity at 250 Hz; (b) pressure and active intensity for the
coupling system at 270Hz.
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the partially opened cavity (dash}dotted line, �"0)8, the peaks have broader bandwidth
than the ones of the closed cavity. This phenomenon is caused by the damping that results
from a sound radiation to the exterior. The peak frequencies for the partially opened cavity
are higher than those for the closed one. This is due to the change of boundary condition at
the top surface. We can also observe the peak at k¸

�
"0)733 ( f"250 Hz). This

corresponds to the Helmholtz resonator mode. The solid line (coupling system) has a trend
similar to the result for the partially opened cavity except for several sharp peaks and
troughs in the low-frequency range (k¸

�
(4). In the frequency range lower than the

frequency for the Helmholtz mode, the peak response occurs "rst and then the trough shows
up as the frequency goes up. These orders are then reversed if the frequency is higher than
the frequency of the Helmholtz mode. As shown in reference [15], these are very typical
coupling phenomena that can be observed near the Helmholtz frequency.

Figure 5 shows the distributions of pressure and active intensity at the frequency for the
Helmholtz resonator mode. The pressure is normalized by the square root of pressure
squared averaged over the cavity (��(p�)��) and the active intensity is normalized by the
value �(p�)��/2�c�. The operator �)� indicates the spatial average over the cavity. Because
the walls and the ba%e are rigid, active intensities normal to them is zero. For the partially
opened cavity (Figure 5(a)), the power that emerges from the source goes out to the outer
"eld through the hole. Figure 5(b) shows the results for the coupling system. The acoustic



Figure 6. Contour and vector plots of acoustic "elds for the coupling system at the second peak and trough
frequencies, pressure and intensity are normalized by ��(p�)�� and �(p�)��/2�c� respectively: (a) pressure and
active intensity at the second peak (170 Hz); (b) pressure and active intensity at the second trough (180 Hz).
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intensity plot indicates that the power goes out through the membrane as well as through
the hole.

Figure 6 illustrates the distribution of pressure and active intensity at the second peak
and trough frequencies (Figure 4). Same normalization was done as in Figure 4. At the peak
frequency (Figure 6(a)), the entire energy from the cavity goes out to the exterior through the
hole and some of it goes back to the cavity again. This energy circulation results in low
radiation e$ciency. However, at the trough frequency (Figure 6(b)) most energy goes out
through the membrane. The pressures over the membrane have larger values than those
over the hole. Active intensities at this frequency are larger than the ones at the peak
frequency. These phenomena result due to the strong structural}acoustic coupling and
con"rms what was obtained by the experiments [15].

6. CONCLUSIONS

We derived the equation of motion that describes the sound pressure inside a "nite cavity,
the vibration amplitude of the membrane that partially covers the cavity, and the sound
pressure of semi-in"nite acoustic space. This physical con"guration is believed to well
represent a coupled acoustic problem. The coupled problem is indeed general because it
enables us to study as to how the structure is coupled with "nite cavity and exterior "eld,
and how the hole is doing with them. Mathematically, it means that we have two boundary
conditions on the surface of the interaction. The structure requires velocity continuity on
and beneath it and the hole requires pressure and velocity continuity. This shows us that the
number of unknowns are smaller than the number of equations. We solved this problem in
the modal domain by additionally imposing the condition that requires sharing the internal
cavity's modes by two coupling elements: structure and hole. The sharing law simply
requires the same as possible modes number of the cavity as those of the coupling elements.
The solution also provides the coupling coe$cients. We believe those coe$cients well
represent the degree of coupling between four elements that we have handled: "nite cavity,
membrane, hole, and exterior "eld.

Numerical results reveal that the coupling slightly shifts Helmholtz frequency and makes
a series of peak and trough sound pressure. We found that the peaks and troughs are
symmetrically arranged with respect to Helmholtz frequency. The strong coupling is
obtained at the trough frequencies where most of the energy goes out through the
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membrane and high radiation e$ciency is obtained. All the coupling e!ects described here
are similar to the experimental results [15].
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